2015 The latest version of Gansu Province. special materials selection and examination of t

2015 The latest version of Gansu Province. special materials selection and examination of t

Matematika Sekolah Menengah Atas matematika-logaritma
tolong bantu dong ak sudah surender di kumpulin besok

matematika-logaritma
tolong bantu dong ak sudah surender di kumpulin besok

Logaritma.

e. 2⁶ = 64 ⇔ ²log 64 = 6

f. 2¹ = 2 ⇔ ²log 2 = 1

g. 2⁰ = 1 ⇔ ²log 1 = 0

h. 2⁻¹ = [tex]\frac{1}{2^{1}}[/tex] = [tex]\frac{1}{2}[/tex] ⇔ ²log [tex]\frac{1}{2}[/tex] = –1

i. 2⁻² = [tex]\frac{1}{2^{2}}[/tex] = [tex]\frac{1}{4}[/tex] ⇔ ²log [tex]\frac{1}{4}[/tex] = –2

j. 2⁻³ = [tex]\frac{1}{2^{3}}[/tex] = [tex]\frac{1}{8}[/tex] ⇔ ²log [tex]\frac{1}{8}[/tex] = –3

k. 2⁻⁴ = [tex]\frac{1}{2^{4}}[/tex] = [tex]\frac{1}{16}[/tex] ⇔ ²log [tex]\frac{1}{16}[/tex] = –4

l. 2⁻⁵ = [tex]\frac{1}{2^{5}}[/tex] = [tex]\frac{1}{32}[/tex] ⇔ ²log [tex]\frac{1}{32}[/tex] = –5

m. 2⁻⁶ = [tex]\frac{1}{2^{6}}[/tex] = [tex]\frac{1}{64}[/tex] ⇔ ²log [tex]\frac{1}{64}[/tex] = –6

Untuk soal berikutnya dapat disimak di penjelasan dengan langkah-langkah.

Penjelasan dengan langkah-langkah

Logaritma merupakan salah satu invers dari perpangkatan. Definisinya:

  • ᵃlog b = n artinya aⁿ = b

dengan syarat a > 0, b > 0, a ≠ 1

Diketahui

[tex]r. \: 3^{-1} = \frac{. . .}{. . .} = \frac{. . .}{. . .}\: \Leftrightarrow \: ^{3}log \: \frac{. . .}{. . .} = . . .[/tex]

[tex]s. \: 3^{-2} = \frac{. . .}{. . .} = \frac{. . .}{. . .} \:\Leftrightarrow \: ^{3}log \: \frac{. . .}{. . .} = . . .[/tex]

[tex]t. \: 3^{-3} = \frac{. . .}{. . .} = \frac{. . .}{. . .} \:\Leftrightarrow \: ^{3}log \: \frac{. . .}{. . .} = . . .[/tex]

[tex]u. \: 4^{\frac{1}{2}} = \sqrt{4} = 2 \:\Leftrightarrow \: ^{4}log \: 2 = \frac{1}{2}[/tex]

[tex]v. \: 16^{\frac{1}{2}} = \sqrt{. . .} = . . .\: \Leftrightarrow \: ^{16}log \: . . . = \frac{. . .}{. . .}[/tex]

[tex]w. \: 8^{\frac{1}{3}} = \sqrt[3]{8} = 2 \:\Leftrightarrow \: ^{8}log \: 2 = \frac{1}{3}[/tex]

[tex]x. \: 16^{\frac{1}{4}} = \sqrt[. . .]{. . .} = . . . \:\Leftrightarrow \: ^{16}log \: . . . = \frac{. . .}{. . .}[/tex]

[tex]y. \: 27^{\frac{1}{3}} = \sqrt[. . .]{. . .} = . . . \: \Leftrightarrow \:^{27}log \: . . . = \frac{. . .}{. . .} [/tex]

Ditanyakan

Lengkapi isian pada titik-titik di atas!

Jawab

Bagian r

[tex]3^{-1} = \frac{1}{3^{1}} = \frac{1}{3}\: \Leftrightarrow \: ^{3}log \: \frac{1}{3} = -1[/tex]

Bagian s

[tex]3^{-2} = \frac{1}{3^{2}} = \frac{1}{9} \:\Leftrightarrow \: ^{3}log \: \frac{1}{9} = -2[/tex]

Bagian t

[tex]3^{-3} = \frac{1}{3^{3}} = \frac{1}{27} \:\Leftrightarrow \: ^{3}log \: \frac{1}{27} = -3[/tex]

Bagian u

[tex]4^{\frac{1}{2}} = \sqrt{4} = 2 \:\Leftrightarrow \: ^{4}log \: 2 = \frac{1}{2}[/tex]

Bagian v

[tex]16^{\frac{1}{2}} = \sqrt{16} = 4\: \Leftrightarrow \: ^{16}log \: 4 = \frac{1}{2}[/tex]

Bagian w

[tex]8^{\frac{1}{3}} = \sqrt[3]{8} = 2 \:\Leftrightarrow \: ^{8}log \: 2 = \frac{1}{3}[/tex]

Bagian x

[tex]16^{\frac{1}{4}} = \sqrt[4]{16} = 2 \:\Leftrightarrow \: ^{16}log \: 2 = \frac{1}{4}[/tex]

Bagian y

[tex]27^{\frac{1}{3}} = \sqrt[3]{27} = 3 \: \Leftrightarrow \:^{27}log \: 3 = \frac{1}{3} [/tex]

Pelajari lebih lanjut  

Materi tentang logaritma https://brainly.co.id/tugas/51937796

#BelajarBersamaBrainly #SPJ1  

[answer.2.content]